X

Модификационная изменчивость

► Модификационная изменчивость — форма изменчивости, не связанная с изменениями генотипа и вызванная влиянием среды на развивающийся организм.

Наличие модификационной изменчивости очень важно для понимания сущности наследования. Наследуются не признаки. Можно взять организмы с абсолютно одинаковым генотипом, например вырастить черенки от одного и того же растения, но поместить их при этом в разные условия (освещенность, влажность, минеральное питание) и получить достаточно сильно отличающиеся растения с разными признаками (рост, урожайность, форма листьев и т. п.). Для описания реально сформировавшихся признаков организма используют понятие фенотип.

► Фенотип — это весь комплекс реально возникших признаков организма. Фенотип формируется как результат взаимодействия генотипа и влияний среды входе развития организма. Таким образом, сущность наследования заключается не в наследовании признака, а в способности генотипа в результате взаимодействия с условиями развития давать определенный фенотип.

Так как модификационная изменчивость не связана с изменениями генотипа, то модификации не передаются по наследству. Обычно это положение почему-то с трудом принимается. Кажется, что если, скажем, родители на протяжении нескольких поколений тренируются в поднятии тяжестей и обладают развитой мускулатурой, то эти свойства должны обязательно передаться детям. Между тем это типичная модификация, а тренировки — это и есть то воздействие среды, которое ПОВЛИЯЛО на развитие признака. Никаких изменений генотипа при модификации не происходит, и приобретенные в результате модификации признаки не наследуются. Дарвин называл этот вид изменчивости ненаследственной.

Для характеристики пределов модификационной изменчивости существует понятие норма реакции. Некоторые признаки у человека невозможно изменить за счет средовых влияний, например группу крови, пол, цвет глаз. Другие, напротив, очень чувствительны к воздействию среды. К примеру, в результате длительного пребывания на солнце цвет кожи становится значительно темнее, а волосы, наоборот, светлеют. На вес человека сильно влияют характер питания, болезни, наличие вредных привычек, стресс, образ жизни.

Средовые воздействия могут приводить не только к количественным, но и к качественным изменениям фенотипа. У некоторых видов примулы при содержании при пониженной температуре (15-20°С) появляются цветы красного цвета, если же растения поместить во влажную среду при температуре 30°С, то образуются белые цветки.

Причем, хотя норма реакции характеризует ненаследственную форму изменчивости (модификационную изменчивость), она тоже определяется генотипом. Это положение достаточно важно — норма реакции зависит от генотипа. Одно и то же воздействие среды у одного генотипа может привести к сильному изменению признака и никак не повлиять на другой.

Законы наследования

ДИПЛОИДНЫЙ хромосомный набор состоит из пар гомологичных хромосом. Одна хромосома из каждой пары унаследована от материнского организма, другая — от отцовского. В результате каждый ген на гомологичной хромосоме имеет соответствующий ген, локализованный в том же месте на другой гомологичной хромосоме. Такие парные гены называются аллельными, или аллелями. Аллели могут быть абсолютно идентичными, но возможны и вариации в их строении. Когда известно множество аллелей, представляющих собой альтернативные варианты гена, локализованного в определенном участке хромосомы, говорят о множественном аллелизме. В любом случае у нормального диплоидного организма могут присутствовать только два аллеля, поскольку имеются только пары гомологичных хромосом.

Первый закон Менделя

Рассмотрим ситуацию, при которой скрещиваются организмы, различающиеся по одной паре признаков (моногибридное скрещивание). Пусть таким признаком будет цвет глаз. На рис. 1.2 изображены пары аллелей на гомологичных хромосомах у родителей. У одного родителя это аллели А, соответственно его генотип для этих аллелей — АА. При данном генотипе цвет глаз карий. У другого родителя на обеих хромосомах находится аллель а (генотип аа), цвет глаз голубой. При образовании половых клеток гомологичные хромосомы расходятся в разные клетки. Поскольку у родителей оба аллеля одинаковы, то они образуют только один сорт половых клеток (гамет). У одного родителя гаметы содержат только аллель А, у другого только аллель а. Такие организмы называются гомозиготными по данной паре генов.

В первом поколении (F1) у потомства будет одинаковый генотип Аа и одинаковый фенотип — карие глаза. Явление, при котором в фенотипе проявляется только один признак из альтернативной пары, называется доминированием, а ген, контролирующий данный признак, — доминантным. Аллель а в фенотипе не проявляется, присутствуя в генотипе в «скрытом» виде. Такие аллели получили название рецессивных. В данном случае выполняется правило единообразия гибридов первого поколения: у всех гибридов одинаковый генотип и фенотип.

Рис. 1.2_

Наследование аллелей при моногибридном скрещивании. Правило единообразия гибридов первого поколения

Рис. 1.3. Наследование аллелей при моногибридном скрещивании во втором поколении (первый закон Менделя)

На рис. 1.3 показано, каким образом будет происходить наследование во втором поколении в случае скрещивания гибридов первого поколения. Каждый родитель будет с равной долей вероятности образовывать половые клетки двух сортов: либо с аллелем А, либо с аллелем а. Такие организмы называются гетерозиготными по данной паре аллелей. Половые клетки в процессе оплодотворения образуют гибриды второго поколения: гомозиготы АЛ, гетерозиготы Act и гомозиготы аа.

(рис. 1.4). Вероятность образования гамет 

Рис. 1.4. Сочетание гамет при моногибридном скрещивании во втором поколении. Подсчет вероятностей появления гомо- и гетерозигот (первый закон Менделя)

Долю вероятности образования тех или иных генотипов удобно вычислять с помощью так называемой решетки Пенета А или а одинакова для каждого родителя и составляет 0,5. Вероятность слияния двух гамет А равна произведению их вероятностей, т. е. 0,25, то же самое верно для генотипа аа. В результате во втором поколении наблюдается расщепление по генотипу в соотношении 1АА:2Аа:1аа.

Если принимать во внимание фенотип, то расщепление будет в соотношении 3:1, т. е. примерно у 3/4 потомков будут карие глаза (доминантный признак), и у 1/4 — голубые (рецессивный признак). Рецессивный признак проявляется только при условии, что рецессивный аллель оказывается в гомозиготном состоянии (аа).

Первый закон Менделя как раз и определяет, что у гибридов второго поколения в потомстве наблюдается расщепление по фенотипу доминантных и рецессивных признаков в соотношении 3:1. Законы наследования, сформулированные Менделем, имеют статистический характер, и их точное выполнение наблюдается только при достаточно больших размерах выборки.

Наследование доминантного признака можно четко проследить, используя родословные. Например, существует мутация, приводящая к брахидактилии (короткопалости), при которой у больных укорочены фаланги пальцев рук и ног, уменьшено число фаланг (не 3, а 2), отмечается низкий рост. Такая аномалия была в свое время отмечена у графа Шрусбери (род. в 1390 г.) и прослежена в 14 последующих поколениях. Если родитель поражен брахидактилией, то примерно половина его детей также поражена. Соответствующая решетка Пенета представлена на рис. 1.5. Предположим, что в брак вступил мужчина, пораженный брахидактилией, и здоровая женщина. Мутантный аллель обозначен А, так как он доминантный, нормальный аллель — а. Вероятность рождения ребенка с брахидактилией равна как раз 0,5, что и наблюдается в действительности. У тех детей, которые оказались здоровыми, в потомстве брахидактилия уже не появляется. Таким образом, брахидактилия наследуется как доминантный признак.

Рис.1.5

Наследование аллеля брахидактилии в браке здоровой женщины и мужчины с брахидактилией (пример так называемого анализирующего скрещивания)

Явление полного доминирования наблюдается далеко не всегда. Иногда наблюдается промежуточный характер наследования или неполное доминирование, когда в фенотипе проявляются оба признака. Очень часто каждому генотипу соответствует свой фенотип, отличный от остальных. Это явление получило название кодоминирования.

Характерной чертой некоторых доминантных генов является неполная пенетрантность. Под пенетрантностью понимается доля индивидов с определенным генотипом, у которых проявляется соответствующий этому генотипу фенотип. Лучше всего пояснить это понятие на примере доминантных генов. При неполной пенетрантности доминантный признак проявляется не у всех носителей данного гена. Например, существует наследственная форма подагры (заболевание, связанное с нарушением обмена мочевой кислоты), определяемая доминантным аутосомным геном. Его пенетрантность составляет порядка 80% у мужчин и 12% у женщин.

Еще одна характерная особенность действия генов — это разная степень выраженности, или варьирующая экспрессивность. Допустим, имеются гетерозиготы по какому-нибудь признаку. В случае варьирования экспрессивности признак будет выражен у всех особей, но в разной степени.

Множественный аллелизм

У любого индивида может быть только два аллеля для каждого локуса хромосомы, поскольку имеются только две гомологичные хромосомы. Однако вариантов определенного аллеля может быть много. Это явление получило название множественного аллелизма. У человека примером множественного аллелизма являются группы крови АВО. Аллель 1А определяет наличие в эритроцитах антигена А, аллель Р связан с наличием антигена В, аллель /О определяет отсутствие в эритроцитах обоих антигенов. Аллели 1А и Р доминируют по отношению к аллелю /0. Если в генотипе оказываются аллели IЛ и Р, то наблюдается кодоминирование. В результате существует шесть генотипов, которым соответствуют четыре фенотипа (четыре группы крови).

Группы крови (фенотипы) Генотипы
0(1) /0/0
A (II) IAIA либо IAI0
В (III) IBIB либо IBI0
АВ (IV) IAIB

Обратите внимание на то, что если в брак вступят лица с первой и четвертой группами крови, то в полном соответствии с законами генетики у них не может быть детей именно с этими группами крови — ни с первой, ни с четвертой! У детей будет с равной вероятностью наблюдаться либо вторая (с генотипом IАЮ). либо третья группа крови (с генотипом IBI0).

Второй закон Менделя

Второй закон Менделя называют законом независимого распределения генов. Он установлен посредством анализа наследования при дигибридном и полигибридном скрещивании, когда скрещиваемые особи отличаются по двум парам аллелей и более. Было установлено, что расщепление по каждой из пар признаков идет независимо от других пар.

Независимое распределение генов происходит из-за того, что при образовании половых клеток (гамет) гомологичные хромосомы из одной пары расходятся независимо от других пар. Поэтому второй закон Менделя выполняется в отличие от первого, только если анализируемые пары генов расположены на разных хромосомах. Если гены расположены на одной хромосоме (сцеплены), то независимого расхождения по гаметам не наблюдается и имеет место явление сцепленного наследования.

Впрочем, есть явление, приводящее к отклонению от закономерностей сцепленного наследования. Это так называемый кроссинговер (перекрест хромосом), который приводит к тому, что гомологичные хромосомы иногда обмениваются участками хромосом. Кроссинговер увеличивает комбинативную изменчивость.

Множественное действие генов

До сих пор мы рассматривали ситуацию, когда разные аллели влияли на появление одного альтернативного признака. Оказалось, что очень часто наблюдается влияние гена не на один признак организма, а на несколько. Такое действие гена называется плейотропным. Множественное действие генов связано с тем, что гены и продукты их деятельности находятся в тесной взаимосвязи и одно изменение может повлиять на несколько признаков.

Пример множественного действия гена

Мутация, приводящая к нарушению структуры фермента синтазы цистатиониона, связана с блокированием одной-единственной реакции в метаболизме аминокислоты метионина. В результате начинается накопление гомоцистеина и метионина и возникает болезнь гомоцистинурия, при которой наблюдается целый ряд симптомов.

  • Дефекты органов зренияразвитие множественных катаракт, отслоение сетчатки, атрофия зрительного нерва.
  • Нарушения структуры соединительной ткани с симптомами, напоминающими болезнь Марфана,паучьи пальцы, деформация коленных суставов.
  • Нейрологические симптомымышечная слабость, судороги, задержка умственного развития, эмоциональные нарушения по типу шизофренических.
  • Ломкость сосудов и повышенное тромбообразование.

При множественном действии гена (плейотропизме) один ген имеет различные фенотипические эффекты. Те же причины — тесная взаимосвязь генов — приводят к тому, что один признак может контролироваться многими генами. Это явление получило название взаимодействия генов.

Взаимодействие генов

В данном разделе речь пойдет о взаимодействии неаллельных генов. Существует множество вариантов такого взаимодействия, из которых мы рассмотрим самый простой и одновременно один из самых важных (рис. 1.6). В данном примере представлен результат скрещивания гетерозигот по двум парам аллелей, от которых зависит длина початка кукурузы. Каждый аллель, обозначенный заглавной буквой или В), вносит свой вклад в величину признака («положительный» аллель); аллели, обозначенные строчной буквой (а или Ь), не оказывают влияния на величину признака («отрицательные» аллели). При этом фенотипическое значение признака зависит только от относительного количества положительных и отрицательных аллелей.

Рис. 1.6. Пример взаимодействия генов. Длина початка кукурузы зависит от двух пар генов. Представлены результаты скрещивания двух гетерозигот

Чем больше количество положительных аллелей, тем больше значение признака. У генотипов ААВВ длина початка самая большая, в случае генотипа ааbb — самая маленькая. У растений с генотипом, содержащим два положительных аллеля, отмечается промежуточное значение длины початка. Такими генотипами являются АаВb, ААbb, ааВВ, причем фенотипически они не различаются.

Эффекты генов при подобном взаимодействии просто складываются, поэтому такой тип взаимодействия получил название «аддитивный», а само явление — аддитивная полигения. Еще одно важное свойство полигенных (т. е. определяемых многими генами) признаков — это появление непрерывного ряда изменчивости признака. Обратите внимание, что скрещивались растения со средней длиной початка (генотип АаВb), а получились растения с самой разной длиной початка — от самой длинной до самой короткой (рис. 1.7, а). Распределение при этом имеет одну моду (унимодально) и приближается к нормальному с возрастанием числа генов, влияющих на данный признак (рис. 1.7, б).

Пример полигенного признака у человека — пигментация кожи. Существует достаточно большое разнообразие в интенсивности пигментации от белого до черного цвета. Число генов, определяющих пигментацию, по-видимому, не так велико, поскольку в браках между мулатами нередко наблюдается появление детей, как с белым, так и с черным цветом кожи.

Рис. 1.7. Пример взаимодействия генов. Длина початка кукурузы зависит от двух пар генов, а фенотипическое проявление признака; б — распределение по фенотипу результатов скрещивания гетерозигот

Выделяют и другие разновидности взаимодействия генов. Есть гены-модификаторы, которые могут влиять на пенетрантность или экспрессивность другого гена. Один ген может подавлять действие другого, неаллельного, гена (эпистаз).

Пример генов-модификаторов в системе групп крови АВО

Существует рецессивная мутация, в гомозиготном состоянии h/h приводящая к появлению фенотипа «Бомбей», при котором подавляется экспрессия антигенов А и В. В результате этого при семейном анализе можно обнаружить, что у пары, в которой женщина по фенотипу относится к первой (нулевой) группе крови, а мужчинако второй (А), рождаются дети с четвертой группой крови (АВ). Это происходит из-за того, что в генотипе женщины имеется аллель, определяющий синтез антигена В, но из-за наличия h/h («Бомбей») он не проявляется в фенотипе. Фенотип «Бомбей» встречается в популяции индусов, живущих в окрестностях Бомбея, и очень редок (1 случай на 13 тыс.).

Генетика пола. Наследование, сцепленное с полом

В хромосомном наборе человека 22 пары хромосом представляют собой аутосомы — они не отличаются у мужчин и женщин. Лишь одна пара хромосом, называемых половыми, различна у мужчин и женщин (см. рис. 1.1). У женщин это две Х-хромосомы, а у мужчин одна Х-хромосома и одна Y-хромосома. Половые хромосомы несут самые разнообразные гены, в том числе не имеющие отношения к первичным и вторичным половым признакам.

У человека развитие организма по мужскому типу определяет Y-хромосома. Если она отсутствует, развитие идет по женскому типу.

У женщин при образовании половых клеток в результате расхождения половых хромосом во всех яйцеклетках обязательно оказывается Х-хромосома. У мужчин в половине половых клеток оказывается Х-хромосома, а в другой половине — Y -хромосома. Пол будущего ребенка определяется в момент оплодотворения. Если в сперматозоиде будет Г-хромосома, то у возникшей в результате оплодотворения зиготы будут X- и Y-хромосомы — этот набор обусловливает развитие мужчины. Если сперматозоид, оплодотворивший яйцеклетку, будет с Х-хромосомой, то в зиготе будут две Х-хромосомы и родится девочка.

Особенности наследования, сцепленного с полом

Гены могут находиться на половых хромосомах, в этом случае говорят, что они сцеплены с полом. Наследование, сцепленное с полом, имеет некоторые важные особенности. Дело в том, что Y -хромосома несет гораздо меньше генов, чем Х-хромосома. Это обстоятельство приводит к тому, что для многих генов на Х-хромосоме нет соответствующих аллелей на Y- хромосоме. В результате если у мужчины на Х-хромосоме оказывается рецессивный аллель, то он проявится в фенотипе. Например, имеется наследственная форма гемофилии — болезни, связанной с нарушением нормальной свертываемости крови. При этих нарушениях у больного возникают длительные кровотечения при любом незначительном повреждении кровеносных сосудов. Существуют две формы гемофилии — А и В, и обе определяются рецессивными генами, локализованными в Х-хромосоме.

На рис. 1.8 показано наследование гемофилии. Схематически представлены половые хромосомы родителей. На Х-хромосомах обозначены аллели рецессивного аллеля гемофилии а. Нормальный аллель доминирует — обозначен как А. Если в брак со здоровым мужчиной вступает здоровая женщина, являющаяся носительницей гена гемофилии, то с одинаковой вероятностью (в 25% случаев) может родиться здоровая дочь, здоровая дочь — носительница гена гемофилии, здоровый сын, больной сын.

Рис. 1.8. Наследование аллеля гемофилии при браке здорового мужчины и здоровой женщины — носительницы гена гемофилии

Таким образом, носительницами гена гемофилии являются женщины, а болеют ею мужчины. Однако если мужчина-гемофилик вступит в брак со здоровой женщиной, то все его сыновья будут обязательно здоровы (потому что они получат от отца Г-хромосому). Дочери будут тоже здоровыми, но обязательно будут носительницами гена гемофилии. На рис. 1.9 показана родословная, иллюстрирующая наследование гена гемофилии типа А. Обратите внимание, что у Леопольда, больного гемофилией, был здоровый сын, а здоровая дочь унаследовала ген гемофилии.

Теоретически возможна гемофилия и у женщины, но такая вероятность очень невысока, так как для этого необходимо вступление в брак больного-гемофилика с женщиной — носительницей гена гемофилии (и даже в этом случае вероятность рождения больной девочки будет только 0,25). Из-за низкой частоты встречаемости гена гемофилии и того, что больные гемофилией часто умирают до брачного возраста, такие случаи практически не отмечаются.

Итак, если рецессивный ген сцеплен с Х-хромосомой, то он гораздо чаще проявляется в фенотипе у мужчин, чем у женщин. Среди других генов, сцепленных с полом, стоит упомянуть гены, связанные с цветовой слепотой.

Встречаются и доминантные гены, сцепленные с Х-хромосомой. Так, существует наследственная форма рахита, которая не поддается лечению витамином D. Если это заболевание есть у отца, то оно передается всем его дочерям, тогда как сыновья все здоровы, так как они получают свою Х-хромосому от матери.

Если гены локализованы в Y-хромосоме, то они должны передаваться только от отцов к сыновьям. В качестве примера такого гена обычно упоминают ген, вызывающий появление пучка волос на внешнем крае уха. Недавно сообщалось об обнаружении гена-маркера на Y-хромосоме, который сцеплен с геном, ответственным за мужскую гипертонию. Если на Г-хромосоме обнаруживается ген-маркер, то у мужчин систолическое давление выше в среднем на 10 мм ртутного столба.

От наследования, сцепленного с полом, надо отличать наследование, ограниченное полом. В случае наследования, ограниченного полом, гены, определяющие развитие признака, находятся в аутосомах, но на их проявление в фенотипе сильно влияет пол. Например, наследственная предрасположенность к раннему облысению связана с геном, локализованным в аутосоме. Однако его активность сильно зависит от уровня тестостерона (мужской половой гормон). В связи с этим у мужчин этот ген ведет себя как доминантный, а у женщин — как рецессивный. Иногда пол сильно влияет на пенетрантность гена, как это бывает в случае наследственной формы подагры (мужчины болеют чаще).

Рис. 7.9. Генеалогическое древо царствовавших семей Европы, иллюстрирую шее наследование гена гемофилии, локализованного в Х-хромосоме (по Лубинину, 1970)

Цитоплазматическая наследственность

Выяснилось, что в некоторых органоидах клетки (митохондриях, пластидах у растительных клеток) имеется небольшое количество ДНК. Митохондриальная ДНК представляет собой кольцевую молекулу и содержит всего около полутора десятков генов и целый ряд последовательностей, кодирующих различные РНК.

При оплодотворении в яйцеклетку не попадают митохондрии сперматозоида, поэтому в зиготе оказываются только митохондрии, унаследованные по материнской линии вместе с цитоплазмой яйцеклетки. Это явление получило название цитоплазматической наследственности.

В случае наследственности, связанной с митохондриальной ДНК, наблюдается неменделевский тип наследования, при котором наследование идет по материнской линии — от матери ко всем детям.

В качестве примера можно привести митохондриальную цитопатию. При этом заболевании отмечаются структурные дефекты митохондрий. Клинически болезнь проявляется в аномалиях нервной системы, мышечной слабости, нарушениях работы почек. Материнский тип наследования наблюдается в некоторых случаях биполярной депрессии. Это заболевание может быть связано со многими гена ми, но у части больных обнаруживается, что у них больше больных родственников по материнской линии, чем по отцовской. В одной работе было, в частности, обнаружено, что у 7 из 32 (22%) исследованных больных биполярной депрессией болезнь наследовалась в семье исключительно по материнской линии (McMahon et al., 1995). Это заставляет думать, что по крайней мере в некоторых случаях биполярная депрессия может быть связана с митохондриальной на следственностью (Kato, 2001).

admin:
Еще статьи